Artificial Intelligence 1:
State Models and Search

Héctor Geffner
ICREA and Universitat Pompeu Fabra
Barcelona, Spain
Motivation

• To a large extent Artificial Intelligence (AI) concerned with modeling and solving problems by means of computers

\[\text{Problem} \rightarrow \text{Language} \rightarrow \text{Representation} + \text{Algorithms} \rightarrow \text{Solution} \]

• Ideally one would describe problem at high-level, and computer would take care of the rest

• Example problems

 8-puzzle rubik mastermind 12 coins
 diagnosis scheduling tsp robot navig
 sorting minesweeper crypto-arith vehicle routing
 \[\ldots \quad \ldots \]
Methodology

how to make sense of this variety of problems?

• Many approaches pursued; many useful ideas and techniques
• To a certain extent AI has become large bag of tools and techniques
• This is unfortunate for both teaching and research
• Goal of course is to provide coherent framework for AI modeling and problem solving
• Coverage is broad but necessarily incomplete
AI Modeling and Problem Solving

Three distinguished components:

• **Representation languages** for describing problems conveniently

• **Mathematical models** for making sense of classes of problems

• **Algorithms** for solving these models
Mathematical models provide suitable abstraction of certain classes of problems

E.g., games such as the 15-puzzle and Rubik’s cube can be described by operations that change the configuration of the game; in both cases, the goal is to assemble a sequence of operations that map an initial configuration into a target one

On the other hand, problems such as Tic-tac-toe or Mastermind have a different structure and a different solution form which is not a fixed sequence of operations
Some mathematical models that you may know

- Systems of n linear equations in n unknowns; e.g. $x + y = 60$ and $x = 3y$

- You also know how to solve them (e.g., gaussian elimination)

- Thus, if you can formulate a problem in this form you can solve it by applying a general method

- E.g., What’s John’s age given that his has 3 times the age of his son and both ages together add up to 60?

- Other models that you probably know: linear programming models, shortest path models in graphs, . . .

- Each model has certain degree of generality and defines clearly what’s a problem and what’s is a (optimal) solution
State Models

- State models are the most basic models in AI

- They are characterized by
 - finite and discrete state space S
 - an initial state $s_0 \in S$
 - a set $G \subseteq S$ of goal states
 - actions $A(s) \subseteq A$ applicable in each state $s \in S$
 - a transition function $f(s, a)$ for $s \in S$ and $a \in A(s)$
 - action costs $c(a, s) > 0$

- A solution is a sequence of applicable actions a_i, $i = 0, \ldots, n$, that maps the initial state s_0 into a goal state $s \in S_G$; i.e., $s_{n+1} \in S_G$ and for $i = 0, \ldots, n$
 \[s_{i+1} = f(a, s_i) \text{ and } a_i \in A(s_i) \]

- Optimal solutions minimize total cost $\sum_{i=0}^{n} c(a_i, s_i)$
Examples: Problems mapping into State Models

- Grid Navigation
- 15-puzzle (n-puzzle)
- Route Finding in Map
- TSP (Traveling Salesman Problem)
- Jug Puzzles (e.g., 4 & 3 liter jars, have 2 liters in 4 liter jar)
Algorithms for Solving State Models

Search algorithms explore/visit state space trying to find (optimal) path from \(s_0 \) to \(S_G \)

Correspondence between directed graphs and state models: search algorithms for state models reduce to single source shortest-path algorithms in directed graphs:

- **Blind search/Brute force algorithms**
 - Goal plays passive role in the search
 - e.g., Depth First Search (DFS), Breadth-first search (BrFS), Uniform Cost (Dijkstra), Iterative Deepening (ID)

- **Informed/Heuristic Search Algorithms**
 - Search uses a function \(h(s) \) that estimates ‘distance’ (cost) from state \(s \) to \(S_G \) to guide search
 - e.g., \(A* \), \(IDA* \), Hill Climbing, Best First Search (BFS), Branch & Bound
General Search Scheme

Solve(Nodes)
 if Empty Nodes -> Fail
 else Let Node = Select-Node Nodes
 Let Rest = Nodes - Node
 if Node is Goal -> Return Solution
 else Let Children = Expand-Node Node
 Let New-Nodes = Add-Nodes Children Nodes
 Solve(New-Nodes)

• Different algorithms obtained by suitable instantiation of
 – Select-Node \textit{Nodes}
 – Add-Nodes \textit{New-Nodes Old-Nodes}

• Nodes are data structures that contain state and bookkeeping info; initially \textit{Nodes} = \{\textit{root}\}

• Notation $g(n)$, $h(n)$, $f(n)$: accumulated cost, heuristic and evaluation function; e.g. in A*, $f(n) \overset{\text{def}}{=} g(n) + h(n)$
Some instances of general search scheme

Depth-First Search expands ‘deepest’ nodes n first

- Select-Node $Nodes$: Select First Node in $Nodes$
- Add-Nodes New Old: Puts New before Old
- Implementation: Nodes is a Stack (LIFO)

Breadth-First Search expands ‘shallowest’ nodes n first

- Select-Node $Nodes$: Selects First Node in $Nodes$
- Add-Nodes New Old: Puts New after Old
- Implementation: Nodes is a Queue (FIFO)
Additional instances of general search scheme

Best First Search expands best nodes \(n \) first; \(\min f(n) \)

- **Select-Node** \(Nodes \): Returns \(n \) in \(Nodes \) with \(\min f(n) \)
- **Add-Nodes** \(New \ Old \): Performs ordered merge
- Implementation: \(Nodes \) is a Heap
- Special cases
 - Uniform cost/Dijkstra: \(f(n) = g(n) \)
 - A*: \(f(n) = g(n) + h(n) \)
 - WA*: \(f(n) = g(n) + Wh(n), \ W \geq 1 \)

Hill Climbing expands best node \(n \) first and discards others

- **Select-Node** \(Nodes \): Returns \(n \) in \(Nodes \) with \(\min h(n) \)
- **Add-Nodes** \(New \ Old \): Returns \(New \); discards \(Old \)
Variations of general search scheme: Bounding

Solve(Nodes,Bound)

if Empty Nodes -> Report-Best-Solution-or-Fail
else
 Let Node = Select-Node Nodes
 Let Rest = Nodes - Node

 if f(Node) > Bound
 Solve(Rest,Bound) ;;; PRUNE NODE n

 else if Node is Goal -> Process-Solution Node Rest
 else
 Let Children = Expand-Node Node
 Let New-Nodes = Add-Nodes Children Nodes
 Solve(New-Nodes,Bound)

Select-Node & Add-Nodes as in DFS
Some instances of general bounded search scheme

Iterative Deepening (ID)

- Uses $f(n) = g(n)$
- Calls Solve with bounds 0, 1, .. til solution found
- Process-Solution returns Solution

Iterative Deepening A* (IDA*)

- Uses $f(n) = g(n) + h(n)$
- Calls Solve with bounds $f(n_0), f(n_1), \ldots$ where $n_0 = \text{root}$ and n_i is cheapest node pruned in iteration $i - 1$
- Process-Solution returns Solution

Branch and Bound

- Uses $f(n) = g(n) + h(n)$
• Single call to Solve with high (Upper) Bound

• Process-Solution: updates Bound to Solution Cost minus 1 & calls Solve(Rest, New-Bound)
Properties of Algorithms

- **Completeness**: whether guaranteed to find solution
- **Optimality**: whether solution guaranteed optimal
- **Time Complexity**: how time increases with size
- **Space Complexity**: how space increases with size

<table>
<thead>
<tr>
<th></th>
<th>DFS</th>
<th>BrFS</th>
<th>ID</th>
<th>A*</th>
<th>HC</th>
<th>IDA*</th>
<th>B&B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Optimal</td>
<td>No</td>
<td>Yes*</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>∞</td>
<td>b^d</td>
<td>b^d</td>
<td>b^d</td>
<td>∞</td>
<td>b^d</td>
<td>b^D</td>
</tr>
<tr>
<td>Space</td>
<td>$b \cdot d$</td>
<td>b^d</td>
<td>$b \cdot d$</td>
<td>b^d</td>
<td>b</td>
<td>$b \cdot d$</td>
<td>$b \cdot d$</td>
</tr>
</tbody>
</table>

-- Parameters: d is solution depth; b is branching factor

-- BrFS optimal when costs are uniform

-- A*/IDA* optimal when h is admissible; $h \leq h^*$
A*: Additional Properties

- A* stores in memory all nodes visited
- Nodes either in Open (search frontier) or Closed
- When nodes expanded, children looked up in Open and Closed lists
- Duplicates prevented and no node expanded more than once

-- A* is **optimal** in another sense: no other algorithm expands less nodes than A* with same heuristic function (*this doesn’t mean that A* is always fastest*)

-- A* expands ‘less’ nodes with more informed heuristic, h_2 more informed that h_1 if $0 < h_1 < h_2 \leq h^*$
Practical Issues: Search in Large Spaces

- Exponential-memory algorithms like A* not feasible for large problems

- Time and memory requirements can be lowered significantly by multiplying heuristic term \(h(n) \) by a constant \(W > 1 \) (WA*)

- Solutions no longer optimal but at most \(W \) times from optimal

- For large problems, only feasible optimal algorithms are linear-Memory algorithms such as IDA* and B&B

- Linear-memory algorithms often use too little memory and may visit fragments of search space many times

- It’s common to extend IDA* in practice with so-called transposition tables

- Optimal solutions have been reported to problems with huge state spaces such 24-puzzle, Rubik’s cube, and Sokoban (Korf, Schaeffer); e.g. \(|S| > 10^{25}\)
• Key issues: heuristics, representation, symmetries, use of memory, branching rules, . . .
Heuristics: where they come from?

- General idea: heuristic functions obtained as optimal cost functions of relaxed problems

- Examples:
 - Manhattan distance in N-puzzle
 - Euclidean Distance in Routing Finding
 - Spanning Tree in Traveling Salesman Problem
 - Shortest Path in Job Shop Scheduling

- Yet
 - how to get and solve suitable relaxations?
 - how to get heuristics automatically?

 We’ll get back to this in Planning . . .
Summary

- AI modeling and problem solving; three main ingredients
 - representation languages for describing problems
 - mathematical models for making sense of problems
 - algorithms for solving models

- So far we’ve focused on State Models and Algorithms for solving them

- No general problem solving yet, but specialized solvers for problems that map into state models

- Next: Planning
 - incorporation of languages for representing problems
 - automatic extraction of heuristics
HW 1: Optimal Solver for 15-puzzle

- Algorithm: IDA*,
- Heuristic: Sum of Manh. Distances (don’t count blank)
- Implementation: need to expand $> 10^6$ nodes/second
- Hand in Code & Results (Time, Cost, Expanded Nodes)
- Run over benchmarks in Korf, AIJ Vol 27, pp 106-7, 1985
- Experiment with A*, WA*, and WIDA*

<table>
<thead>
<tr>
<th>N</th>
<th>Initial State s_0</th>
<th>$h(s_0)$</th>
<th>$h^*(s_0)$</th>
<th>Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14 13 15 7 11 12 9 5 6 0 2 1 4 8 10 3</td>
<td>41</td>
<td>57</td>
<td>276M</td>
</tr>
<tr>
<td>2</td>
<td>13 5 4 10 9 12 8 14 2 3 7 1 0 15 11 6</td>
<td>43</td>
<td>55</td>
<td>15M</td>
</tr>
<tr>
<td>3</td>
<td>14 7 8 2 13 11 10 4 9 12 5 0 3 6 1 15</td>
<td>41</td>
<td>49</td>
<td>565M</td>
</tr>
<tr>
<td>4</td>
<td>5 12 10 7 15 11 14 0 8 2 1 13 3 4 9 6</td>
<td>42</td>
<td>56</td>
<td>62M</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>14</td>
<td>7 6 8 1 11 5 14 10 3 4 9 13 15 2 0 12</td>
<td>41</td>
<td>59</td>
<td>1369M</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>88</td>
<td>15 2 12 11 14 13 9 5 1 3 8 7 0 10 6 4</td>
<td>43</td>
<td>65</td>
<td>6009M</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

-- Nodes: Number of generated nodes (in Millions)
Goal state is 0 1 2 ... 15, where first four numbers refer to first row, second four numbers to second row, etc.
Selected Bibliography for Current Research